Economic potential of recovery and recycling of silicone photovoltaics cells and non-ferrous metals as part of the transition towards a circular economy
PDF

Keywords

recycling,
solar panels,
SWOT analysis
economic dimension
circular economy
utilisation
photovoltaic energy,

How to Cite

Niekurzak, M., Brelik, A., & Lewicki, W. (2023). Economic potential of recovery and recycling of silicone photovoltaics cells and non-ferrous metals as part of the transition towards a circular economy . Economics and Environment, 86(3), 202–224. https://doi.org/10.34659/eis.2023.86.3.600

Abstract

The article aims to assess the economic recovery and recycling of silicon PV cells and the non-ferrous metals contained in them, taking into account the analysis of costs, benefits and factors: legal, ecological, technical, technological and social. The research methodology was based on statistical measures related to the analysis of PV structure and changes in individual years of operation. For the designated structures, the current state of knowledge and legal status in the field of recycling methods of exploited PV installations were defined. In addition, an analysis of the Polish market about selected developed countries concerning the recycling sector was performed, and the identification of key factors and barriers to the development of the analysed sector was presented. On this basis, the possibilities and directions of support for the PV recycling sector were indicated, and a SWOT analysis of possible methods of its support was made.

https://doi.org/10.34659/eis.2023.86.3.600
PDF

References

Azeumo, M. F., Germana, C., Ippolito, N. M., Franco, M., Luigi, P., & Settimio, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314-319. https://doi.org/10.1016/j.solmat.2019.01.035

Cerchier, P., Brunelli, K., Pezzato, L., Audoin, C., Rakotoniaina, J. P., Sessa, T., Tammaro, M., Sabia, G., Attanasio, A., Forte, C., Nisi, A., Suitner, H., & Dabala, M. (2021). Innovative recycling of end-of-life silicon PV panels: Resielp. Detritus, 16, 41-47. https://doi.org/10.31025/2611-4135/2021.15118

Chen, W. S., Chen, Y. J., Lee, C. H., Cheng, Y. J., Chen, Y. A., Liu, F. W., Wang, Y. C., & Chueh, Y. L. (2012). Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon. Processes, 9, 712. https://doi.org/10.3390/pr9040712

Chrzanowski, M., & Zawada, P. (2023). Fraction Separation Potential in the Recycling Process of Photovoltaic Panels at the Installation Site—A Conceptual Framework from an Economic and Ecological Safety Perspective. Energies, 16, 2084. https://doi.org/10.3390/en16052084

D’Adamo, I., Miliacca, M., & Rosa, P. (2017). Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. International Journal of Photoenergy, 4184676. https://doi.org/10.1155/2017/4184676

Fiandra, V., Sanino, L., Andreozzi, C., Corcelli, F., & Graditi, G. (2019). Silicon photovoltaic modules at end-of-life: Removal of polymers layers and separation of materials. Waste Manag, 87, 97-107. https://doi: 10.1016/j.wasman.2019.02.004

Fuentes, M., Vivar, M., de la Casa, J., & Aguilera, J. (2018). An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renewable and Sustainable Energy Reviews, 93, 110-120. https://doi.org/10.1016/j.rser.2018.05.021

Glass, J. R., Kruse, G. H., & Miller, S. A. (2015). Socioeconomic considerations of the commercial weathervane scallop fishery off Alaska using SWOT analysis. Ocean & Coastal Management, 105, 154-165. https://doi.org/10.1016/j.ocecoaman.2015.01.005

Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., & Toro, L. (2014). Recycling of photovoltaic panels by physics operations. Solar Energy Materials and Solar Cells, 123, 239-248. https://doi.org/10.1016/j.solmat.2014.01.012

Green, M. A. (2015). The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Solar Energy Materials and Solar Cells, 143, 190-197. https://doi.org/10.1016/j.solmat.2015.06.055

Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 14(10), 5561-5568. https://doi.org/10.1021/nl501982b

Han, Q., Gao, Y., Su, T., Qin, J., Wang, C., Qu, Z., & Wang, X. (2023). Hydrometallurgy recovery of copper, aluminum and silver from spent solar panels. Journal of Environmental Chemical Engineering, 11(1), 109236. https://doi.org/10.1016/j.jece.2022.109236

Huang, W. H., Shin, W. J., Wang, L., Sun, W. C., & Tao, M. (2017). Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22-31. https://doi.org/10.1016/j.solener.2017.01.001

IRENA. (2023). End-of-life management: Solar Photovoltaic Panels. https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels

Kang, S., Yoo, S., Lee, J., Boo, B., & Ryu, H. (2012). Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy, 47, 152-159. https://doi.org/10.1016/j.renene.2012.04.030

Kenisarin, M. M. (2014). Thermophysical properties of some organic phase change materials for latent heat storage: A review. Solar Energy, 107, 553-575. https://doi.org/10.1016/j.solener.2014.05.001

Kreiger, M. A., Shonnard, D. R., & Pearce, J. M. (2013). Life cycle analysis of silane recycling in amorphous silicon-based solar photovoltaic manufacturing. Resources, Conservation and Recycling, 70, 44-49. https://doi.org/10.1016/j.resconrec.2012.10.002

Ma, T., Li, Z., & Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): Technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116, 109406. https://doi.org/10.1016/j.rser.2019.109406

Mahmoudi, S., Huda, N., & Behnia, M. (2019). Photovoltaic waste assessment: Forecasting and screening of emerging waste in Australia. Resources Conservation and Recycling, 146(6), 192-205. https://doi.org/10.1016/j.resconrec.2019.03.039

Marwede, M., Berger, W., Schlummer, M., Mäurer, A., & Reller, A. (2013). Recycling paths for thin-film chalcogenide photovoltaic waste–Current feasible processes. Renewable Energy, 55, 220-229. https://doi.org/10.1016/j.renene.2012.12.038

Money.pl. (2023). Notowania surowców. https://www.money.pl/gielda/surowce/ (in Polish).

Moon, G., & Yoo, K. (2017). Separation of Cu, Sn, and Pb from the photovoltaic ribbon by hydrochloric acid leaching with stannic ion followed by solvent extraction. Hydrometallurgy, 171, 123-127. https://doi.org/10.1016/j.hydromet.2017.05.003

Nazir, H., Batool, M., Osorio, F. J. B., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

Niekurzak, M., Lewicki, W., Coban, H. H, & Brelik, A. (2023). Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production. Sustainability, 15(3), 2822. https://doi.org/10.3390/su15032822

Ostrowski, P. (2010). Procesy termiczne i chemiczne w recyklingu ogniw i modułów fotowoltaicznych z krystalicznego krzemu [Doctoral dissertation]. Politechnika Gdańska. (in Polish).

Pagnanelli, F., Moscardini, E., Granata, G., Atia, T. A., Altimari, P., Havlik, T., & Toro, L. (2017). Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management, 59, 422-431. https://doi.org/10.1016/j.wasman.2016.11.011

Pandey, A. K., Hossain, M. S., Tyagi, V. V., Abd Rahim, N., Jeyraj, A., Selvaraj, L., & Sari, A. (2018). Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renewable and Sustainable Energy Reviews, 82, 281-323. https://doi.org/10.1016/j.rser.2017.09.043

Polman, A., Knight, M., Garnete, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352, aad4424. https://doi.org/10.1126/science.aad4424

Romel, M., Kabir, G., & Ng, K. T. W. (2023). Analysis of barriers to photovoltaic waste management to achieve the net-zero goal of Canada. Environmental Science and Pollution Research, 30, 85772-85791. https://doi.org/10.1007/s11356-023-28313-2

Saliba, M., Matsui, T., Seo, J., Domanski, K., Correa-Baena, J., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., & Gratzel, M. (2016). Caesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997. https://doi.org/10.1039/C5EE03874J

Savvilotidou, V., Antoniou, A., & Gidarakos, E. (2017). Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management, 59, 394-402. https://doi.org/10.1016/j.wasman.2016.10.003

Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. (2019). Integrated Remediation Processes Toward Heavy Metal Removal/Recovery from Various Environments: A Review. Frontiers in Environmental Science, 7, 66. https://doi.org/10.3389/fenvs.2019.00066

Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., & Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye-sensitized solar cells (DSSC): A review. International Journal of Energy Research, 40(10), 1303-1320. https://doi.org/10.1002/er.3538

Sultan, S. M., & Efzan, E. (2018). Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 173, 939-954. https://doi.org/10.1016/j.solener.2018.08.032

Szkudlarek, Ł. (2019). Recykling wyeksploatowanych komponentów technicznych odnawialnych źródeł energii oraz akumulatorów pojazdów elektrycznych jako element transformacji w kierunku gospodarki o obiegu zamkniętym. https://www.ewaluacja.gov.pl/strony/badania-i-analizy/wyniki-badan-ewaluacyjnych/badania-ewaluacyjne/recykling-wyeksploatowanych-komponentow-technicznych-odnawialnych-zrodel-energii-oraz-akumulatorow-pojazdow-elektrycznych-jako-element-transformacji-w-kierunku-gospo/ (in Polish).

Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108-124. https://doi.org/10.1016/j.solmat.2015.05.005

Trivedi, H., Meshram, A., & Gupta, R. (2023). Recycling of photovoltaic modules for recovery and repurposing of materials. Journal of Environmental Chemical Engineering, 11(2), 109501.

Umair, M. M., Zhang, Y., Iqbal, K., Zhang, S., & Tang, B. (2019). Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage: A review. Applied Energy, 235, 846-873. https://doi.org/10.1016/j.apenergy.2018.11.017

Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global Status of Recycling Waste Solar Panels: A Review. Waste Management, 75, 450-458. https://doi.org/10.1016/j.wasman.2018.01.036

Yi, Y. K., Kim, H. S., Tran, T., Hong, S. K., & Kim, M. J. (2014). Recovering valuable metals from recycled photovoltaic modules. Journal of the Air & Waste Management Association, 64, 797-807. https://doi.org/10.1080/10962247.2014.891540

Yin, W., Shi, T., & Yan, Y. (2014). Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 26(27), 4653-4658. https://doi.org/10.1002/adma.201306281

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Economics and Environment

Downloads

Download data is not yet available.