Life cycle assessment of glass/polyester laminates used in the shipbuilding industry and its fire behavior
PDF

Keywords

glass/polyester laminates
life cycle assessment
cone calorimeter
Fire Test Procedures (FTP) Code

How to Cite

Dowbysz, A., Kukfisz, B., Samsonowicz, M., Markowska, D., & Jankowski, P. (2023). Life cycle assessment of glass/polyester laminates used in the shipbuilding industry and its fire behavior . Economics and Environment, 85(2), 236–254. https://doi.org/10.34659/eis.2023.85.2.529

Abstract

The aim of this study is to assess the environmental performance of the manufacturing process of glass/polyester laminates as well as estimate their fire behaviour and smoke release. The Life Cycle Assessment was conducted according to the ISO14040/44 standard by using the CML-IA 2000 Baseline Midpoint method. The cone calorimeter study was conducted using a cone calorimeter method according to ISO 5660. The tests were performed under 25 kW/m2 heat flux 50 kW/m2. The results showed that according to the requirements of the Fire Test Procedure (FTP) Code examined, laminates in this form cannot be used in some applications. The LCA study showed that the highest impact is attributed to marine aquatic ecotoxicity (88.3%), with the highest contribution of the unsaturated polyester resin and the glass fibre.

https://doi.org/10.34659/eis.2023.85.2.529
PDF

References

Abdou, K., Le Loc’h, F., Gascuel, D., Romdhane, M. S., Aubin, J., & Ben Rais Lasram, F. (2020). Combining ecosystem indicators and life cycle assessment for environmental assessment of demersal trawling in Tunisia. The International Journal of Life Cycle Assessment, 25(1), 105-119. https://doi.org/10.1007/s11367-019-01651-5

Bałdowska-Witos, P., Piasecka, I., Flizikowski, J., Tomporowski, A., Idzikowski, A., & Zawada, M. (2021). Life Cycle Assessment of Two Alternative Plastics for Bottle Production. Materials, 14(16). https://doi.org/10.3390/ma14164552

Barboni, T., Leonelli, L., Santoni, P.-A., & Tihay-Felicelli, V. (2017). Influence of particle size on the heat release rate and smoke opacity during the burning of dead Cistus leaves and twigs. Journal of Fire Sciences, 35(4), 259-283. https://doi.org/10.1177/0734904117709964

Barsotti, B., Gaiotti, M., & Rizzo, C. M. (2020). Recent Industrial Developments of Marine Composites Limit States and Design Approaches on Strength. Journal of Marine Science and Application, 19(4), 553-566. https://doi.org/10.1007/s11804-020-00171-1

Benzarti, K., & Colin, X. (2013). Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In J. Bai (Ed.), Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications (pp. 361-439). Woodhead Publishing. https://doi.org/10.1533/9780857098641.3.361

Berberich, J., Li, T., & Sahle-Demessie, E. (2019). Biosensors for Monitoring Water Pollutants: A Case Study With Arsenic in Groundwater. In S. Ahuja (Ed.), Separation Science and Technology (pp. 285-328). Academic Press. https://doi.org/10.1016/B978-0-12-815730-5.00011-9

Bolf, D., Zamarin, A., & Basan, R. (2020). Composite Material Damage Processes. Journal of Maritime & Transportation Science, 3(3), 307-323.

Di Giuseppe, E., D’Orazio, M., Du, G., Favi, C., Lasvaux, S., Maracchini, G., & Padey, P. (2020). A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings. Sustainability, 12(4), 1535. https://doi.org/10.3390/su12041535

Do Thi, H., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle Pestle and Multi-Criteria Decision Analyses. Water, 13(21), 1-27. https://doi.org/10.3390/w13213023

Dowbysz, A., Samsonowicz, M., & Kukfisz, B. (2021). Modification of Glass/Polyester Laminates with Flame Retardants. Materials, 14(24), 7901. https://doi.org/10.3390/ma14247901

Ead, A. S., Appel, R., Alex, N., Ayranci, C., & Carey, J. P. (2021). Life cycle analysis for green composites: A review of literature including considerations for local and global agricultural use. Journal of Engineered Fibers and Fabrics, 16. https://doi.org/10.1177/15589250211026940

Farinha, C., de Brito, J., & Veiga, M. D. (2021). Life cycle assessment. In C. Farinha, J. de Brito & M.D. Veiga (Eds.), Eco-Efficient Rendering Mortars (pp. 205-234). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818494-3.00008-8

Flasińska, P., Maranda, A., & Kukfisz, B. (2018). Materiały wybuchowe i ich wpływ na środowisko. Przemysł chemiczny, 97(11), 1957-1961. https://doi.org/10.15199/62.2018.11.30 (in Polish).

Gabathuler, H. (1997). LCA History: Centrum voor Milieukunde Leiden (CML). The International Journal of Life Cycle Assessment, 2(4), 187-194. https://doi.org/10.1007/BF02978413

Gabathuler, H. (2006). The CML Story: How Environmental Sciences Entered the Debate on LCA. The International Journal of Life Cycle Assessment, 11(1), 127-132. https://doi.org/10.1065/lca2006.04.021

Gkoloni, N., & Kostopoulos, V. (2021). Life cycle assessment of bio-composite laminates. A comparative study. IOP Conference Series: Earth and Environmental Science, 899(1), 012041. https://doi.org/10.1088/1755-1315/899/1/012041

Heijungs, R., & Ligthart, T. (2004). Improvement of LCA characterization factors and LCA practice for metals. https://www.semanticscholar.org/paper/Improvement-of-LCA-characterization-factors-and-LCA-Westenenk-Heijungs/71b011cdda2161f7670be5e85e540716fdc3d4ba

Hertwich, E. G., Mateles, S. F., Pease, W. S., & McKone, T. E. (2001). Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environmental Toxicology Chemistry, 20(4), 928-939.

Hiltz, J. A. (2011). New Technologies and Materials for Enhanced Damage and Fire Tolerance of Naval Vessels. Canada: Defence R&D Canada – Atlantic.

Horváthová, M., & Makovická Osvaldová, L. (2020). Testing of natural insulation materials using a conical calorimeter. Proceedings of CBU in Natural Sciences and ICT, Prague, Czech Republic, 1, 14-20. https://doi.org/10.12955/pns.v1.115

Hupfer, M., & Hilt, S. (2008). Lake Restoration. In S.E. Jørgensen & B.D. Fath (Eds.), Encyclopedia of Ecology (pp. 2080-2093). Academic Press. https://doi.org/10.1016/B978-008045405-4.00061-6

International Maritime Organization. (2012). FTP Code : International code for application of fire test procedures. London : International Maritime Organization. https://nla.gov.au/nla.cat-vn6156311

Jacob-Lopes, E., Zepka, L. Q., & Deprá, M. C. (2021). Methods of evaluation of the environmental impact on the life cycle. In E. Jacob-Lopes, L.Q. Zepka & M.C. Deprá (Eds.), Sustainability Metrics and Indicators of Environmental Impact (pp. 29-70). Elsevier. https://doi.org/10.1016/B978-0-12-823411-2.00003-7

Joseph, A., & Dalaklis, D. (2021). The international convention for the safety of life at sea: highlighting interrelations of measures towards effective risk mitigation. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 5(1), 1-11. https://doi.org/10.1080/25725084.2021.1880766

Krasny, J. F., Parker, W. J., & Babrauskas, V. (2001). Fundamentals. In J.F. Krasny, W.J. Parker & V. Babrauskas (Eds.), Fire Behavior of Upholstered Furniture and Mattresses (pp. 18-82). William Andrew Publishing. https://doi.org/10.1016/B978-081551457-2.50003-6

Kukfisz, B., & Maranada, A. (2014). Zastosowanie metody oceny cyklu życia (LCA) do oszacowania wpływu na środowisko górniczych materiałów wybuchowych ładowanych mechanicznie. Chemik, 68(1), 29-33. (in Polish).

Lan, K., & Yao, Y. (2022). Dynamic Life Cycle Assessment of Energy Technologies under Different Greenhouse Gas Concentration Pathways. Environmental Science & Technology, 56(2), 1395-1404. https://doi.org/10.1021/acs.est.1c05923

Marquis, D., Guillaume, E., & Lesenechal, D. (2013). Accuracy (Trueness and Precision) of Cone Calorimeter Tests with and Without a Vitiated Air Enclosure. Procedia Engineering, 62, 103-119. https://doi.org/10.1016/j.proeng.2013.08.048

Rödger, J.-M., Beier, J., Schönemann, M., Schulze, C., Thiede, S., Bey, N., & Hauschild, M. Z. (2021). Combining Life Cycle Assessment and Manufacturing System Simulation: Evaluating Dynamic Impacts from Renewable Energy Supply on Product-Specific Environmental Footprints. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 1007-1026. https://doi.org/10.1007/s40684-020-00229-z

Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine Application of Fiber Reinforced Composites: A Review. Journal of Marine Science and Engineering, 8(1), 26. https://doi.org/10.3390/jmse8010026

Schartel, B., & Hull, T. R. (2007). Development of fire-retarded materials - Interpretation of cone calorimeter data. Fire and Materials, 31(5), 327-354. https://doi.org/10.1002/fam.949

Segovia, F., Blanchet, P., Amor, B., Barbuta, C., & Beauregard, R. (2019). Life Cycle Assessment Contribution in the Product Development Process Case Study of Wood Aluminum-Laminated Panel. Sustainability, 11(8), 1-20.

Sonnier, R., Vahabi, H., & Chivas-Joly, C. (2019). New Insights into the Investigation of Smoke Production Using a Cone Calorimeter. Fire Technology, 55(3), 853-873. https://doi.org/10.1007/s10694-018-0806-z

Van Oers, L., De Koning, A., Guinée, J. B., & Huppes, G. (2002). Abiotic resource depletion in LCA: Improving characterisation factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Netherlands: Road and Hydraulic Engineering Institute.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Economics and Environment

Downloads

Download data is not yet available.