Economic and environmental analyses of the construction of on-site, large-scale photovoltaic farms


photovoltaic farms
renewable energy sources
photovoltaic panels
solar panels

How to Cite

Zegardlo, Bartosz, Natalia Pogonowska, and Antoni Bombik. 2024. “Economic and Environmental Analyses of the Construction of on-Site, Large-Scale Photovoltaic Farms ”. Economics and Environment 88 (1): 596.


This paper addresses the construction of large-scale photovoltaic farms. The paper describes the issues of the current overconsumption of energy from traditional sources and the associated overuse of fossil fuels. Alternatives to these processes are presented based on literature sources, and the use of renewable energy sources, focusing on solar energy, is recommended here. In the research section, attention was focused on the economic and environmental aspects of ventures involving the construction of large-scale farms by manufacturing companies with high monthly energy consumption. In the first stage of the work, economic analyses were carried out based on data obtained from photovoltaic installation companies. For the simulation, an assessment of the costs and benefits of building a photovoltaic farm for a steel construction company located in eastern Poland was used. Another element of the research part of the study was an analysis of the results of a questionnaire survey, which was conducted among people living in the vicinity of such farms. On this basis, the environmental impact of neighbouring areas of this type of investment was estimated. Positive conclusions from the analyses made it possible to recommend the construction of this type of facility, especially for manufacturing plants with high electricity consumption.



Act from 20 February 2015. Act on Renewable Energy Sources. Journal of Laws 2015, item 478. (in Polish).

Akella, A. K., Saini, R. P., & Sharma, M. P. (2009). Social, economic and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390-396.

Alva, G., Liu, L., Huang, X., & Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693-706.

Apanowicz, J. (2002). Ogólna Metodologia. Gdynia: Wydawnictwo Diecezji Pelplińskiej Bernardinium. (in Polish).

Bakis, R. (2007). Alternative electricity generation opportunities. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 30(2), 141-148.

Becla, A., Czaja, S., & Zielińska, A. (2012) Cost-benefit analysis in the valuation of the natural environment. Warsaw: Difin. (in Polish).

Bernath, C., Deac, G., &Sensfulβ, F. (2021). Impact of sector coupling on the market value of renewable energies-A model-based scenario analysis. Applied Energy, 281, 115-185.

Blaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M, & Badescu, V. (2019). A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 70, 119-144.

Boardman, A. E., Greenberg, D. H., Vining, A. V., & Weimer, D. L. (2006). Cost-Benefit Analysis: Concepts and Practice. 3rd edition. New Jersey: Pearson Prentice Hall.

Brodziński, Z., Brodzińska, K., & Szadziun, M. (2021). Photovoltaic farms-economic efficiency of investments in north-east Poland. Energies, 14(8), 2087.

Brownlie, D. (1922). The Early History of the Coal Gas Process. Transactions of the Newcomen Society, 3(1), 57-68.

Chenni, R., Makhlouf, M., Kerbache, T., & Bouzid, A. (2007). A detailed modelling method for photovoltaic cells. Energy, 32(9), 1724-1730.

Devauchelle, B., Badet, L., Lengelé, B., Morelon, E., Michallet, M., Testelin, S., D’Hauthuille, C., & Dubernard, J.-M. (2006). First human face allograft: early report. The Lancet, 368(9531), 203-209.

Dresselhaus, M. S., & Thomas, I. L. (2001). Alternative energy technologies. Nature, 414(6861), 332-337.

Garrett, C. W. (1992). On global climate change, carbon dioxide, and fossil fuel combustion. Progress in Energy and Combustion Science, 18(5), 369-407.

Ghaedi, A., Abbaspour, A., Fotuhi-Friuzabad, M., & Parvania, M. (2014). Incorporating Large Photovoltaic Farms in Power Generation System Adequacy Assessment. Scientia Iranica, 21(3), 924-934.

Gong, J., Li, C., & Wasilewski, M. R. (2019). Advances in solar energy conversion. Chemical Society Reviews, 48(7), 1862-1864.

Grätzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 44(20), 6841-6851.

Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964.

Jordehi, A. R. (2016). Parameter estimation of solar photovoltaic (PV) cells: A review. Renewable and Sustainable Energy Reviews, 61, 354-371.

Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.

Kweku, D. W., Bismark, O., Maxwell, A., Desmond, K. A., Danso, K. B., Oti-Mensah, E. A., Quachie, A. T., &Adormaa, B. B. (2018). Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6), 1-9. DOI: 10.9734/JSRR/2017/39630

Łobocki, M. (2000). Metody i techniki badań pedagogicznych. Kraków: Oficyna Wydawnicza Impuls. (in Polish).

Mathews, I., Kantareddy, S. N., Buonassisi, T., & Peters, I. M.(2019). Technology and Market Perspective for Indoor Photovoltaic Cells. Joule, 3(6), 1415-1426.

McCloskey, D. N. (1981). The Industrial Revolution. The Economic History of Britain Since 1700, Cambridge: Cambridge University Press,103-27.

Midilli, A., Dincer, I., & Rosen, M. A. (2007). The Role and Future Benefits of Green Energy. International Journal of Green Energy, 4(1), 65-87.

Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global Climate Change and Greenhouse Effect. Entrepreneurship and Sustainability Issues, 7(4), 2897.

Mitchell, J. F. (1989). The 'Greenhouse' Effect and Climate Change. Reviews of Geophysics, 27(1), 115-139.

Nawrot, F. (2018). The legal concept of shared natural resources. Polish Yearbook of Environmental Law, (8), 33-51

Nowicki, M. (2012). Nadchodzi era Słońca. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).

Olkuski, T. (2018). Światowe zużycie energii pierwotnej oraz zapotrzebowanie na nią w przyszłości. Polityka i Społeczeństwo, 2(16), 56-70. (in Polish).

Pacesila, M., Burcea, S. G., &Colesca, S. E. (2016). Analysis of renewable energies in European Union. Renewable and Sustainable Energy Reviews, 56, 156-170.

Palacios, A., Barreneche, C., Navarro, M. E., & Ding, Y. (2020). Thermal energy storage technologies for concentrated solar power-A review from a materials perspective. Renewable Energy, 156, 1244-1265.

Pausas, J. G., & Keeley, J. E. (2009). A Burning Story: The Role Of Fire In The History Of Life. BioScience, 59(7), 593-601.

Plewa, F., & Strozik, G. (2019) Energy and environmental implications of electromobility implementation in Poland. In IOP Conference Series: Earth and Environmental Science, 261, 0112 042

Rehman, M. U. (2020). Dynamic correlation pattern amongst alternative energy market for diversification opportunities. Journal of Economic Structures, 9, 1-24.

Rockett, A., Blaschek, H. P., Butterfield, S., & Chung, Y.-W. (2011). Transformative research issues and opportunities in alternative energy generation and storage. Current Opinion in Solid State and Materials Science, 15(1), 8-15.

Saidi, K., &Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environmental Research, 186, 109-167.

Saunders, B. R., & Turner, M. L. (2008). Nanoparticle-polymer photovoltaic cells. Advances in colloid and interface science, 138(1), 1-23.

Sibinski, M., & Znajdek, K. (2016). Przyrządy i instalacje fotowoltaiczne. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).

Skorny, Z. (1984). Prace magisterskie z psychologii i pedagogiki: przewodnik metodologiczny dla studiujących nauczycieli.Warszawa: Wydawnictwa Szkolne i Pedagogiczne. (in Polish).

Solomon, S., Daniel, J. S., Murphy, D. M., &Sanford, T. J. (2010). Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences, 107(43), 18354-18359.

Szot-Gabryś, T. (2013). Koncepcja rachunku kosztów i korzyści w rachunkowości odpowiedzialności społecznej przedsiębiorstwa. Warszawa: Difin. (in Polish).

Tokarski, D., &Zegardło, B. (2020). Costs and economic benefits of recycling electrical insulators in special concretes production. Economics and Environment, 75(4), 95-102.

Tytko, R. (2010). Odnawialne źródła energii. Warszawa: OWG Publishing House. (in Polish).

Wolańczyk, F. (2019). Jak wykorzystać darowaną energię. O kolektorach słonecznych i ogniwach fotowoltaicznych. Krosno: KaBe Publishing House. (in Polish).

Yang, L., Gao, X., Lv, F., Hui, X., Ma, L., & Hou, X. (2017). Study on the local climatic effects of large photovoltaic solar farms in desert areas. Solar Energy, 144, 244-253.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment


Download data is not yet available.